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1 Introduction

The main goal of this article is to provide a practical way to measure the mass distri-
bution of swords, or at least the aspects of it that have a significant effect on handling
properties. These meaningful measurements should ease the comparisons between
weapons when hands-on examination is impractical. The typical situations for use of
such characteristics could range from on-line reviews and purchase of reproductions
or martial training tools, to the study of museum pieces.

Numerical properties are interesting in that they allow comparison even when
measured by people from completely different backgrounds. In that, they are better
than just appreciation of how the weapon handles with words. Words are always
relative to what the writer has previously experienced. Numbers on the other hand,
are just relative to each other.

Some familiarity with basic Newtonian physics will be useful in order to fully under-
stand the reasoning, however this is not necessary for carrying out the measurements.
For the more scientifically inclined individuals, several mathematical demonstrations
are included as appendices.

Some may be worried by the idea of reducing the dynamic feel of things like
swords, which feel immensely complex when you become familiar with them, to just a
few numbers... The key point to underline here is that the complexity, trade-off, etc.
is still present in the interaction and dependency between those numerical properties.
Do not underestimate the possible complexity of the interaction between a handful of
numbers...

This paper is not intended to provide a solution to the difficult problem of the
modern, accurate reproduction of ancient artifacts. It is obvious that there is more to
it than just a few numbers, and that nothing will ever replace hands-on examination.
This is also caused by the fact that a sword, for example, has more qualities than just
balance: it must be solid, sharp, resilient... Balance is just one of the facets we can
look at when appreciating a sword, or any such weapon.

I must stress from the beginning that the aim is not to find a weapon better than
the other. This simply has no meaning. The qualities of a weapon may be best suited
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to a fighting style or another, but most weapons can be used effectively (that is, from
the point of view of mass distribution; some may still be unsuitable for fighting because
of materials or assembly for example). It will be possible to check if a reproduction
has the same properties as the original it is based on, but no characteristic should be
interpreted as ‘it is best if the value is so much’. It should always be ‘it amounts to
so much, thus it favours X at the expense of Y’.

And finally a word of caution: measuring a weapon involves some handling. Be
careful when you do it with sharp blades. In fact be careful in general! I do not want
people to get hurt while just trying to measure swords. If you feel your grip is not
secure enough, if there are any living beings nearby (including yourself obviously) that
could be hurt by a sword falling down, just lay the sword down and rest. If the sword
falls and is not worth any piece of your own skin then do not attempt to catch it. Do
not take chances...

1.1 Simplifying assumptions

For an easy analysis and measurement, we need to make some simplifying assumptions.
For the purpose of analyzing mass distribution and its consequences on the dynamics
of the weapons, we will consider the sword as a rigid, one-dimensional rod with a
varying mass density along its length. This assumption is justified by three main
observations:

• Swords are generally rigid, at least in the plane of the edge

• Swords are thin: their length is several times bigger than either their thickness
or width

• Many swords are straight, or with a small degree of curvature

Of course this is an approximation, but analyzing simple objects such as these
is a prerequisite for anything more complex. Vibrations cannot really be considered
without including rigid body motions. Curved objects are harder to measure and
their handling is particular, but some of the conclusions about straight objects are
still useful. It is common and well-accepted for studies in physics to make those kinds
of simplifying assumptions, and it leaves us with a model that is sufficiently complex
for a first study.

2 Swords as two-mass systems

2.1 Insight from physics

Our simplified sword can still be quite complex. In theory, in order to fully describe
it, one would need to specify the density of mass at each point along the length. That
makes for a significant (technically infinite) amount of data, and it is quite impossible
to fully measure without literally cutting the sword in very small pieces.
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Fortunately, we can further simplify the description. Because we are interested
in the consequences of mass distribution on handling and motion, we can look into
Newton’s equation of dynamics in order to judge which properties really are important.
I will not spell out the equations here (see details in appendix B.1), but they show
that only three intrinsic properties of the sword should be considered. These are:

• the total mass M

• the location of the center of gravity G

• the radius of gyration around the center of gravity k

The total mass is the amount of matter there is in the sword. The center of gravity
is the average position of the matter. The radius of gyration is a length that represents
how far on average the matter is from the center of gravity. Or, for those more familiar
with statistics:

• mass ≈ number of samples

• center of gravity ≈ average

• radius of gyration ≈ standard deviation

This insight allows us to say that many of our one-dimensional rods are equivalent
to one another: if two objects share the same M , G and k, and are subject to the
same external actions at the same places, they move exactly in the same way. This
means that they cannot be distinguished by any measurement procedure that only
involves forces, torques and motions. They also feel the same because they react to
our actions in the exact same way.

In that sense, there is some useless complexity even in the simplistic one-dimensional
rod model. Swords are actually even simpler than that as far as their perceived mass
distribution is concerned. What remains to do at this stage is to find a useful family
of simple objects whose behaviour is intuitive, which can be linked to any sword, and
whose defining properties can be measured. This is the topic of the next section.

2.2 Two-mass equivalent

A very useful and intuitive equivalent object is a two-mass system. It is simply built
from two masses of different values, linked together by a rigid but mass-less rod. The
advantage is that instead of having a multitude of density values along the whole
length, we can consider only two masses and their respective positions. That makes
four degree of freedom only.

Readers might have noted that the equations of dynamics show that only three
parameters are required to fully determine an object’s mass distribution. That means
that for any given sword, you can build as many two-mass equivalents as you want,
depending on only one parameter. For example, the location of one of the masses
can be arbitrary. Figure 1 shows a pair of two-mass systems equivalent to a simple
uniform stick.
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Figure 1: Several objects equivalent dynamic-wise to a simple stick, that would handle
and move in the same way. From top to bottom: the stick with uniform density, a two
mass system with one of the masses near the tip, another two-mass system with the masses
equally spaced around the center of balance. The volume of the spheres here is proportional
to their mass, but for the equivalence to be exact they would have to be point-masses.

Of course, once the location of one of the masses has been decided, it is possible
to compute the location of the other one, as well as the values of both, from M , G
and k. The converse is also true; from a system of two masses it is fairly easy to
compute the three core variables. Mathematical demonstrations of these aspects can
be found in appendix B.2. However these computations are not strictly necessary for
a first approach, because as will be shown in section 3 it is possible to measure the
properties of two-mass systems directly from the sword.

2.3 Analysis of the system applied to handling properties

Handling can be assessed if one of the masses is placed on the grip (remember, the
position of one of the masses can be arbitrarily chosen in order to obtain a two-mass
system). Let’s call H that position on the grip. Then the other mass must be placed
at another point F that lies on the blade (as has been pointed out before the exact
place where the mass is can be measured, see section 3).

Once this is done there are three essential properties that can be distinguished:

• dynamic length: the length HF between the two masses.

• blade weight: the value of the mass located on the blade at F .

• cross weight: the value of the mass located at H.

Dynamic length and blade weight are the two key limiting factors for the perfor-
mance of the sword. Dynamic length indicates how long the sword feels. Imagine
handling a sword with the eyes closed: you will still have some feeling of length, of
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Figure 2: A sword and the dynamically equivalent two-mass system that can be used to
assess handling. The drawing shows the five defining properties: blade length, hilt length,
dynamic length, cross weight and blade weight.

where and how far the sword points, because you feel the dynamic length. Also, the
longer it is, the more stable the sword will feel in thrusts, the shorter it is, the quicker
it will snap into cuts. Blade weight is specifically felt in the wrist. Cross weight is less
important for instantaneous perception in my experience but has a long-term effect :
a big cross weight will tire the arm sooner. Of course the sum of blade weight and
cross weight is the total mass of the sword... Blade weight and cross weight as defined
here should not be understood as the weight of individual components of the sword,
that can only be measured once the sword is disassembled. Rather, they are virtual
weights that summarize the dynamic properties of the sword. For example, adding
mass to the pommel will diminish blade weight, whereas the mass of the actual blade
would obviously remain the same.

Blade weight is generally a good approximation of the mass that impacts the
target when the sword hits. The two masses are not strongly coupled upon a sideways
impact: when there is an impact at the location of one of them the motion of the
other one is not changed and its mass does not come into account. Of course mass is
not the only thing that matters for an impact, but it has effects, in particular a bigger
mass will make deeper damages. On the other hand, a big mass is not really efficient
if the target is light and mobile; in this case the target gets moved around a lot but
is not irreversibly damaged.

What most people call ‘blade presence’ is actually fairly well represented by the
ratio between the blade weight and the total weight. Note that it could be possible
to have swords with the same blade weight, but with different blade presence. That
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is how some swords can have a significant blade presence, without necessarily being
wrist-breakers : they have ‘normal’ blade weights but a relatively low cross weight.

An interesting issue is deciding on which exact point should be chosen as the point
H. In my experience it is best to chose the junction between cross and handle as
that reference. The main reasons for this is that this point is an objective reference
that can be accurately located on most swords, and according to which we generally
position our lead, dominant hand. It is therefore the natural reference point to chose
when trying to compare the handling of swords.

Empirically, the dynamic length seems to be always very close to that of a uniform
stick of the same length as that of sword. That means that a sword cannot have any
random balance and still feel good. That being said, more data is needed to fully
qualify this observation.

In addition to these mass distribution properties, two geometric lengths have a
notable importance: blade length and hilt length. Blade length is the distance between
the junction cross-handle and the tip, and defines the reach of the sword. Hilt length
is measured from the junction cross-handle to pommel nut, and is somewhat less
significant. It only indicates if the sword can be handled with one or two hands, and
the maximum lever that can be used to move the sword if it is used with two hands.

All the properties are summed up on figure 2, and numerical results that I have
gathered on several swords can be found in appendix A.

3 Measuring

A good thing about these two-mass systems is that all their properties can be directly
measured in most pragmatic cases. This section describes the process.

3.1 General idea

Point H is easy to spot, which leaves us with the problem of finding point F (or
equivalently measuring the dynamic length) and determining the masses.

Let us assume that we have a way to determine the dynamic length. Then it is
trivial to measure both masses: one just has to rest the sword horizontally on two
scales, at point H on one side and at point F on the other side, and read the values.
That procedure can be further simplified and involve only one scale, the other being
replaced by a simple resting point. That way, one of the masses is measured, and it
is easy to obtain the total weight of the sword, hence the value of the other mass.

3.2 Measuring the dynamic length: using centers of oscilla-

tion

The dynamic length is a tricky parameter because it cannot be measured statically.
You have to move the object in order to measure it, there are no ways around that.
I will describe here the test that needs the least amount of equipment and can be
performed by hand and eye.
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The basic idea is easily understandable, once you know that the weapon is dynam-
ically equivalent to a two-mass system. If you shake one of the masses very quickly,
perpendicular to the rod, the other will stay nearly motionless. Taking gravity into
account, this remains true only if the object is vertical, i.e. one mass above the other.
The dynamic length is simply the distance between the ‘shaking’ location and the
point that does not move somewhere on the sword.

Let us now describe the measurement from the practical point of view.
The sword must be grabbed as lightly

Figure 3: The so-called ‘waggle test’.

and accurately as possible at the ref-
erence point H. I usually grab the
weapon between just index and thumb.
The goal here is to minimize the torque
that can be applied to the weapon, be-
cause it perturbs the measurement. Let
the weapon hang down vertically, with
the center of gravity below your hand.
It is usually easier and safer that way.
The test can be done the other way
around, but I do not recommend that.
The sword is unstable when its center
of gravity is above the holding point,
this is distracting and dangerous when
trying to get an accurate measurement.

Move that reference point back and
forth as fast as possible. The motion
must be quick but need not be too am-
ple, around one fifth of the length of
the weapon is plenty enough. If all
goes well, you should see a point down
on the sword that does not move. This
is known as the center of oscillation as-
sociated to your reference point. It is
also the point F where the second mass
of the two-mass system lies. That pro-
cess is illustrated on figure 3.

There are several mistakes that can
disturb this measurement. First, if you apply a torque on your gripping point, it will
unsettle the oscillation. That is why the grip must be as light as possible. Second,
if the motion of your hand is not quick enough, there will be a motionless point on
the weapon, but it will not be the actual center of oscillation. In fact, by varying the
frequency of your hand’s motion, you should be able to make the weapon pivot about
anywhere you want. It is only when the frequency becomes high that the motionless
point merges with the center of oscillation.

These factors mean that this kind of measurement needs a little practice. Trying it
with simple sticks at first is a good idea. It allows to get a feel of it with something safer
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and lighter than a sharp sword. I would expect competent martial artists to perform
this test better, because they will be more comfortable with letting the weapon move
by itself.

As far as precision is concerned, the main source of error lies in spotting the fixed
point. It is really difficult to get it within less than a couple of centimeters. Looking
at the sword from the top, handle to tip, makes it appear more clearly. As I said
earlier, the frequency of the motion also has an influence. However, the error due to
the frequency becomes small rapidly as frequency goes up, smaller than the error in
spotting the fixed point. This is probably a bit of an academic concern though: the
final error of the measurement might be smaller than what you can feel when handling
swords... The governing equations are detailed in appendix B.3.

A good practical mean to mark and check the position of the center of oscillation
is to use a hair tie looped around the blade, and look for its motion. If it is too close
to H, it will move in phase with your hand, going left when you hand goes left. If it
is too far, it will move in opposition, going right when your hand goes left. Through
trial and error you can manage to get the hair tie just at the fixed point, and this
makes it easier to measure the dynamic length.

3.3 Illustrated example

In this section I will give a step-by-step illustrated description of how to measure a
sword for its handling properties. The sword under study here is a blunt rapier made
by Darkwood Armory.

Let’s start with the necessary tools:

• A tape ruler, at least as long as the sword you want to measure

• Some sort of scale to weigh your sword. I use a kitchen scale with a flat plate,
able to measure up to 5kg and accurate to a gram, which is plenty sufficient

• One coloured hair tie, not too large for precision

• Some supporting objects that will probably have to be used in order to weigh
the sword

This whole set can be seen on figure 4.
The first step is measuring the important lengths on the sword. I prefer to store at

least blade length (cross-grip junction to tip) and overall length, or equivalently blade
length and hilt length (overall length minus blade length). The most important to
get precisely is the blade length. In order to do that, it is advisable to put the zero of
the ruler at the tip, and then measure accurately the blade length and overall length
from there. This process is illustrated on figure 5. Of course other significant lengths
could be noted, for example grip, ricasso, etc.

As a second step, the dynamic length should be measured. The waggle test is used
here, holding the sword at the handle-cross junction. The hair tie is used to get an
easier and more accurate measurement. See the result also on figure 5, and a video of
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Figure 4: The tools used for the measure of the dynamic properties of swords: scales, tape
ruler, hair ties, supporting objects. And of course the sword...

Figure 5: All the important lengths measured on a sword: putting the origin of the ruler
at the tip (upper left), first get the blade length (upper right), the overall length (lower left)
and the dynamic length (lower right, this involves a subtraction from blade length: here
107cm - 27.5cm = 79.5cm).
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the waggle test on my website 1. Leave the hair tie on, it will be useful in the next
step.

Finally blade weight and total weight can be measured. It is possible that some
kind of supporting object will be needed on the scales to be able to lay the sword as
it should. Digital kitchen scales commonly have a function to take tare weight into
account, do not forget to use it!

In order to measure blade weight, a small supporting object must be found so
that the blade can rest on it as accurately as possible. A certain brand of chocolate
candy has a shape that lends itself to that very well... The other resting point can be
one of your fingers, at the cross-handle junction, as illustrated on figure 6. It is also
important that the sword is as close to the horizontal as possible, otherwise errors
might be introduced.

Measuring the total weight is so simple and well known that I do not feel compelled
to provide an illustration...

Figure 6: Weighing the blade mass. The sword rests horizontally on the finger at the
handle-cross junction and on the support and scales at the center of oscillation, marked by
the hair tie.

1http://www.subcaelo.net/ensis/weighing/waggleTest.avi or http://www.subcaelo.net/
ensis/weighing/waggleTest.wmv
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4 Conclusion

I hope this article can provide some more accurate understanding on how mass dis-
tributions of swords can be measured, interpreted and compared. Focusing on the
quantities that have an effect on the handling properties of the weapons allows to re-
duce the number of necessary measurements. This kind of measurement should prove
useful for any objective comparison between weapons.

What is needed now is more data, collected both on original weapons and reproduc-
tions; it would allow us to refine our understanding of how these significant quantities
vary across sword types. That is why I have chosen to address the measuring process
in greater details in my first article.

I have decided not to write down everything I know about mass distribution in this
first article, focusing only on the most simple form of measurement that gives usable
results without any computation. Aspects that I would like to discuss in further
articles include:

• More advanced measurement procedures, using correlation between several cen-
ters of Oscillation

• How to obtain variations of the mass distribution when mass is added or removed
somewhere (for example how to balance something)

• Different equivalent objects

• Various graphical representations of the results

• More in-depth interpretation of the handling properties

• Consequences on impact behaviour

All of these will require more supportive data, and more mathematical manipulations.
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A Handling data measured on actual swords

I have gathered some data on my collection of swords, which has contributed a lot to
my current understanding. Here is a short description of the swords:

A&A Milanese rapier The standard one from Arms&Armor offerings, bought in
2004;

Darkwood rapier A rapier I bought in 2007, with a blunt bated rapier blade, mea-
sured here with a 3 ring swept hilt. More details about that rapier can be read
here: http://www.myarmoury.com/talk/viewtopic.php?t=9865;

Boken 1 A rather classic wooden Japanese training weapon made out of white oak.
Quite lively and even-balanced;

Boken 2 Another wooden weapon, heavier and more difficult to handle, that I bought
in order to increase my speed and power;

Iaito A metal training Japanese saber. This particular example is very lively, almost
too light;

Ninja to A typical, a-historical straight and short blade you see in movies. This is
a cheap reproduction that I bought when I was too young to know better;

Albion Squire The standard offering from Albion Armourers Next Gen line;

AT Type XI An Angus Trim sword, actually the first functional steel sword I have
bought, back in 2001;

Longsword waster This is a longsword made by Purpleheart Armoury, in 2003 I
believe (lost track of the exact date);

Napoleonic briquet A small marine infantry weapon (it is the model ‘An XI’ to be
accurate), this seems to be an original;

G.F. XV-1/2 Two swords made by Gaël Fabre, a French swordsmith, of very good
quality. Both are of Oakenshott Type XV;

G.F. XVI-1/2 Two other swords by Gaël Fabre, this time of Oakenshott Type XVI;

G.F. Spatha Another sword by Gaël Fabre, very different from the other four. It
is a Merovingian Spatha sporting a wide fullered blade with parallel edges, far
more cut-oriented than the rest;

A&A Montante A steel training sword produced by Arms&Armor meant to be
representative of the larger Iberian two-handers;
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Synthetic A one-handed synthetic sword produced by the Knight Shop, designed as
a relatively safe and cheap sparring and drilling tool. Some leaders of Historical
European Martial Arts based in Europe took part in the design of this model.
This is the version used at the HEMAC event Dijon 2010; newer versions might
have different properties...

A fellow sword enthusiast, Thom Ryan, also posted some data he measured on
swords of his collection. I am grateful to him for the time he took and decided to
include the data deduced from the measurements here. The list of his swords is as
follow:

A&A Cavalier The standard offering from Arms&Armor, described as allowing a
very steady and powerful thrust, at the expense of the recovery time and overall
agility;

Spadroon An antique weapon

Basket Hilt Also an antique;

Albion Brescia Spadona The standard offering from Albion Armourers Museum
line;

A&A type XVIIIa A sword made by Arms&Armor;

AT 1401, 1516, 1404 Three swords from Angus Trim. The 1401 has been modified
with a lighter pommel than what it had originally.

In both cases the methodology used was slightly different from that described in
this paper, though it gives exactly the same amount of information. The data is not
the raw measured information but is computed from it. I have checked on my swords
that both methods give the same results with a very acceptable precision. I hope that
the data included in table 1 can provide a useful comparison point to anyone willing
to measure his collection. For a more visual analysis, I also include a graph of the
dynamic data on figure 9.
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Name Blade length Hilt length Dynamic length Blade weight Cross weight Blade presence
(mm) (mm) (mm) (g) (g) (%)

A&A Milanese 956 134 674 272 1074 20
Darkwood rapier 1068 142 791 156 942 14
Boken 1 749 266 589 179 393 31
Boken 2 730 285 554 279 514 35
Iaito 745 260 585 201 608 25
Ninja to 510 170 315 287 479 37
Albion Squire 820 160 606 219 888 20
AT Type XI 845 135 604 339 670 34
Purpleheart waster 975 245 630 309 398 44
Napoleonic briquet 590 130 423 231 1069 18
G.F. XV-1 745 150 650 151 939 14
G.F. XV-2 805 175 693 149 881 14
G.F. Spatha 815 135 580 320 542 37
G.F. XVI-1 824 158 710 194 994 16
G.F. XVI-2 785 160 676 209 951 18
A&A Montante 1150 400 1122 228 1956 10
Synthetic 885 180 577 222 542 29
A&A Cavalier 914 131 825 240 1250 16
Spadroon 800 165 692 192 1108 15
Basket Hilt 889 178 698 175 1020 15
Brescia Spadona 895 263 647 230 1304 15
AT1401 889 211 584 259 822 24
AT1516 838 267 686 143 1144 11
A&A type XVIIIa 800 231 552 211 1319 14
AT1404 724 165 495 261 1069 20

Table 1: Dynamic data gathered on swords by myself and Thom Ryan.
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A&A Milanese

Darkwood rapier
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Iaito

Ninja to
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Figure 7: A visual representation of the two mass equivalent objects for all the measured
weapons. The black line is the axis of the weapon. The red line intersects it at the junction
cross-handle (all weapons were aligned according to this location in the figure). The area
of the grey discs is proportional to the blade weight and the cross weight. The distance
between them gives the dynamic length.
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Figure 8: The rest of the data in the same format as on figure 7.
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Figure 9: A plot summarizing the essential handling data measured on real swords. The
x-axis is the cross weight, the y-axis is the blade weight, and the size of the circles is
proportional to dynamic length.
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B Mathematical demonstrations

In the following it is assumed that the reader is familiar with many mathematical
operations, among which integration, differential equations, linear algebra and solving
system of equations. These will not be explained again. I am unsure of how far in the
educative system of each country around the world one would have to go to master
these notions. I expect that anyone with an engineering background would understand
the manipulations and definitions.

The demonstrations are of unequal difficulty. They are here because I feel it
is important to have them in such a document, so that the interested reader does
not have to rework everything by himself, and so that the assumptions and models
are exposed to scrutiny in their details. They are also good examples of how to
manipulate and think about the dynamics. However, as I said before, understanding
these demonstrations is not required in order to use the results exposed in the core of
the article.

I tried to rate the difficulty of the various sections by adding a number of K next
to the titles. The more coffees, the more difficult the part is. I do not drink coffee
myself so the estimates could be a bit off...

B.1 Newton’s equations and the definition of the mass dis-
tribution properties K

As per the assumptions made at the beginning, we will not give the most general
definitions here, but rather simpler forms that pertain to one-dimensional objects
moving in a two-dimensional plane. Points on the weapon have one coordinate along
the axis of the weapon, that I denote by the lower-case of the name of the point. The
coordinate value increases as you go towards the tip. The origin could be arbitrarily
chosen, but setting things up so that the center of gravity G has coordinate 0 along
the axis of the weapon simplifies the expressions.

At each point X along the axis of the weapon, we define µ(x), the linear density
of the weapon at coordinate x. It is such that the mass of an infinitely thin section
of the weapon comprised between positions x and x + dx is the product µ(x)dx. It
could be thought off as virtually splitting the weapon in a great many tiny slices.

In the two-dimensional case, if you apply a force F and a torque C at point H,
the speed of the weapon’s center of gravity (V) and its speed of rotation (Ω) vary
according to:

M
dV

dt
= F

Mk2
dΩ

dt
= C +GH× F

(1)

Here d

dt
is used as the classical notation denoting variation in time, and × is the

cross product of vectors. The definitions of the mass distribution properties (M , G,
and k) are simply a matter of integration.
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The mass of the weapon is:

M =

∫

weapon

µ(x)dx (2)

The position of the center of gravity G is:

0 = g =
1

M

∫

weapon

xµ(x)dx (3)

(remember, G is chosen as the origin of the weapon’s coordinate system, hence g = 0
by definition)

And finally, the radius of gyration around the center of gravity is:

k =

√

1

M

∫

weapon

(x− g)2µ(x)dx (4)

(g = 0 here but is left in the definition for clarity, as it is possible to define radius of
gyration around any point)

On statistical distributions, if we consider µ(x) as a probability density function,
then M = 1 (it is a property of these functions), g is by definition the average, and k

is the standard deviation.

B.2 Two-mass equivalence KK

Let us have a weapon of mass M , center of gravity G, and radius of gyration k. As
usual, we will take all measurements of lengths relative to G. Let us choose a point
R at abscissa r. We are looking for the system of two masses, one m1 at R, one m2

at another point P , that has the same total mass, radius of gyration, and center of
gravity as the weapon. That gives the following system, to be solved for p, m1 and
m2:







m1 + m2 = M

m1 r + m2 p = Mg = 0
m1 r2 + m2 p2 = Mk2

(5)

With the hypothesis that r 6= p, we can solve the first two equations in m1 and
m2 like a linear system:

[

1 1
r p

] [

m1

m2

]

=

[

M

0

]

Assuming that r 6= p, the matrix on the left-hand side can easily be inverted,
giving:

[

m1

m2

]

=







p

p− r
−

1

p− r

−
r

p− r

1

p− r







[

M

0

]
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And finally:

m1 = M
p

p− r

m2 = −M
r

p− r

We then replace m1 and m2 with their respective values in the third equation of
the system (5), finding:

Mk2 = Mr2
p

p− r
−Mp2

r

p− r

= M

(

pr2 − rp2

p− r

)

= M

(

rp(r − p)

p− r

)

= −Mrp

To conclude, we end up with the following solution:



























m1 = M
p

p− r

m2 = M
r

r − p

p = −
k2

r

(6)

B.3 Pendulums and the ‘waggle test’ KKK

B.3.1 Description of the system

The fixed origin of the coordinates is O. The sword is supposed to hang from point R
that can move horizontally but not vertically, and is always situated on the x axis. A
force F is applied at this point, with vertical and horizontal components. The sword
is also subject to the action of the gravity along the vertical, represented as a vertical
force P at the sword’s center of gravity. The angle between the axis of the sword and
the vertical is θ.

To sum up, the system is parametrized like this:

OR = x x

RG = r sin(θ) x− r cos(θ) y

F = Fx x+ Fy y

P = −Mg y

(7)

On figure 10 the main variables are shown.
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Figure 10: The model used to demonstrate the properties of swords as pendulums and the
waggle test.
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B.3.2 Generic equations of the system

We can write Newton’s equation for the system like this:















M
d 2OG

dt 2
= F+P

Mk2
d 2θ

dt 2
= (F×RG) · z

(8)

Replacing F, P and RG by their expressions given earlier, we find:















M
d 2OG

dt 2
= Fx x+ (Fy −Mg) y

Mk2
d 2θ

dt 2
= −Fyr sin(θ)− Fxr cos(θ)

(9)

The next step is the computation of the second derivative of OG. Noting first and
second derivatives with ˙ and ,̈ we find:

OG = (x+ r sin(θ)) x− r cos(θ) y

dOG

dt
= (ẋ+ rθ̇ cos(θ)) x+ rθ̇ sin(θ) y

d 2OG

dt 2
= (ẍ+ rθ̈ cos(θ)− rθ̇2 sin(θ)) x+ (rθ̈ sin(θ) + rθ̇2 cos(θ)) y

(10)

We introduce this result in 9, and project on x and y, finally finding the following
system of 3 equations:











Mẍ+Mrθ̈ cos(θ)−Mrθ̇2 sin(θ) = Fx

Mrθ̈ sin(θ) +Mrθ̇2 cos(θ) = Fy −Mg

−Fyr sin(θ)− Fxr cos(θ) = Mk2θ̈

(11)

B.3.3 Expression of the system for small displacements

The system 11 is exact, but hard to solve. As is often done with the simple pendulum,
we will rather solve an approximate system, valid for small θ. We make a first order
approximation, which gives sin(θ) ≈ θ, cos(θ) ≈ 1, θ̈θ ≈ 0, and θ̇2 ≈ 0. The system
takes a simpler form:











Mẍ+Mrθ̈ = Fx

0 = Fy −Mg

−Fyrθ − Fxr = Mk2θ̈

(12)

B.3.4 Pendular motion

Starting from this result, we are able to derive the equation driving the motion in the
case of a fixed point R. We just have to assume x as a constant in time, and thus in
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particular ẍ = 0. This leads, after replacing Fy by its expression, to the system:
{

Mrθ̈ = Fx

−Mgrθ − Fxr = Mk2θ̈
(13)

Eliminating Fx and regrouping the terms, we get:

−Mgrθ −Mr2θ̈ = Jθ̈

−Mgrθ = M(k2 + r2)θ̈
(14)

In order to simplify further, we can use P , the center of oscillation associated to
R. Its position relative to the center of gravity of the weapon is p = k2

r
, as shown in

appendix B.2 (pay attention to the convention of sign for the distances, here p and r

are both positive). The equation simplifies further:

−Mgrθ = (Mrp+Mr2)θ̈

gθ = −(p+ r)θ̈
(15)

And finally, defining l = p+ r the length between the fixed point R and its center
of oscillation P , we find:

gθ = −lθ̈ (16)

This is exactly the equation of a simple pendulum (a point mass attached to
a string) of length l. It is a common calculation to find the period of oscillation,
something well-known and demonstrated in any physics textbook. As a reminder the

period is simply T = 2π
√

l
g
. That formula can be used to measure the center of

oscillation in an other way, by timing the oscillations of the sword.

B.3.5 Precision of the ‘waggle test’

For the study of the ‘waggle test’, we are looking for the behaviour of the system
during forced oscillations. That is, the tester imposes a periodic displacement of R
on the x axis, and the object responds with a periodic variation of the angle θ. Using
complex numbers for the notation, we can write this as x = x0e

jωt, θ = θ0e
jωt, where

ω(s-2) is the pulsation of the excitation.

This has the advantage of suppressing derivatives, because dejωt

dt
= jωejωt. This

leads to another version of the system written in 12:










(−Mω2x0 −Mrω2θ0)e
jωt = Fx = F0e

jωt

Fy = Mg

−Mgrθ0 − F0r = −Mk2ω2θ0

(17)

It appears that the periodicity of x and θ enforces the periodicity of Fx. We then
find two different expressions for the amplitude F0 of the force:







F0 = −M(ω2x0 + rω2θ0)

F0 = M
k2ω2 − gr

r
θ0

(18)
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These equalities can then be used to find an expression of x0 as a function of θ0:

ω2x0 + rω2θ0 =
−k2ω2 + gr

r
θ0

x0 =
−k2ω2 + gr − r2ω2

rω2
θ0

(19)

To simplify the expression for x0, again we use P , the center of oscillation associ-
ated to R. The expression for x0 becomes:

x0 =
g − (r + p)ω2

ω2
θ0 (20)

We will use this to find the precision of the ‘waggle test’. During the test, we
are looking for a point A of the weapon that stays fixed in space. This means that
dOA

dt
= 0. The derivation of OA is very similar to that of OG in 10:

OA = OG+ a sin(θ)x− a cos(θ)y

dOA

dt
= (ẋ+ (r + a)θ̇ cos(θ)) x+ (r + a)θ̇ sin(θ) y

(21)

With the approximation we have made earlier, an expression of a becomes:

0 = jωx0 + (r + a)jωθ0

a = −
x0

θ0
− r

(22)

Thanks to the previous expression of x0, the value of a can easily be found:

a = −
g − (r + p)ω2

ω2
− r

=
(r + p)ω2 − g − rω2

ω2

= p−
g

ω2

(23)

The interest of the ‘waggle test’ is that A is meant to be very close to P . Noting
the difference (the error of the measure) as ε = p − a, and using the link from the
pulsation to the period of the oscillations ω = 2π

T
, we find finally:

ε =
T 2g

4π2
(24)

Or if what is desired is a given precision for the test:

T = 2π

√

ε

g
(25)

It is interesting to note that the precision becomes very high for quite low T . For
example, for ε = 1cm, we find T ≈ 0.2s. In fact the precision of the test itself is easily
superior to the precision of the measure of the fixed spot on the weapon.
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